Flow between a stationary and a rotating disk shrouded by a co-rotating cylinder
نویسنده
چکیده
Boundary layers on stationary and rotating disks have received much attention since von Kármán’s @Z. Angew. Math. Mech. 1, 233 ~1921!# and Bödewadt’s @Z. Angew. Math. Mech. 20, 241 ~1940!# studies of the cases with disks of infinite radius. Theoretical treatments have focused on similarity treatments leading to conflicting ideas about existence and uniqueness, and where self-similar solutions exist, whether they are physically realizable. The coupling between the boundary layer flows and the interior flow between them, while being of practical importance in a variety of situations such as turbomachinery and ocean circulations, is not well understood. Here, a numerical treatment of the axisymmetric Navier–Stokes equations, together with some experiments for the case of finite stationary and rotating disks bounded by a co-rotating sidewall is presented. We show that in the long time limit, solutions are steady and essentially self-similar. Yet the transients are not. In particular, axisymmetric waves propagate in the stationary disk boundary layer when the vortex lines entering the boundary layer develop inflection points, and there are subsequent eruptions of vortical flow out of the boundary layer deep into the interior at large Reynolds numbers. © 1996 American Institute of Physics. @S1070-6631~96!01410-9#
منابع مشابه
Mathematical Modeling of Potential Flow over a Rotating Cylinder (RESEARCH NOTE)
Potential flow over rotating cylinder is usually solved by the singularity method. However,in this paper a mathematical solution is presented for this problem by direct solution of the Laplace’sequation. Flow over the cylinder was considered non-viscous. Neumann and Dirichlet boundaryconditions were used on the solid surfaces and in the infinity, respectively. Because of non-viscous flow,the La...
متن کاملBoundary Layers and Heat Transfer on a Rotating Rough Disk
The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...
متن کاملA Numerical Study on the Aeroacoustic Radiation from a Finite Length Rotating Cylinder
Rotating cylinders have wide applications in different areas, especially the aerodynamic area. However, the acoustic behaviors of these components have not been widely studied. The generating noise from a spinning cylinder is mainly due to the detached vortices from the leeward of the body. In this study, the large eddy simulation technique is used to simulate the flow field over a three-dimens...
متن کاملDevelopment of a novel method in TRMC for a Binary Gas Flow Inside a Rotating Cylinder
A new approach to calculate the axially symmetric binary gas flow is proposed Dalton’s law for partial pressures contributed by each species of a binary gas mixture (argon and helium) is incorporated into numerical simulation of rarefied axially symmetric flow inside a rotating cylinder using the time relaxed Monte-Carlo (TRMC) scheme and the direct simulation Monte-Carlo (DSMC) method. The res...
متن کاملNumerical simulation of incompressible turbulent flow in shrouded disk system with radial outflow
The flow behavior inside the shrouded disk system is of importance in appropriate design of turbomachinery cavities and turbine test cell hydraulics dynamometer. The turbulent incompressible flow is analyzed for the shrouded disk system with axial clearance. The flow core behaves as a Batchelor type structure when a weak inflow is imposed on the disk cavity. By increasing the inflow, the centra...
متن کامل